Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Hongbin Sun
- Mike Zach
- Prashant Jain
- Vlastimil Kunc
- Ahmed Hassen
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jim Tobin
- John Lindahl
- Josh Crabtree
- Justin Griswold
- Kim Sitzlar
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Merlin Theodore
- Nate See
- Nedim Cinbiz
- Nithin Panicker
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sandra Davern
- Steven Guzorek
- Subhabrata Saha
- Tony Beard
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.