Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Greg Larsen
- Hongbin Sun
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Mike Zach
- Prashant Jain
- Steven Guzorek
- Andrew F May
- Annetta Burger
- Ben Garrison
- Beth L Armstrong
- Brad Johnson
- Brittany Rodriguez
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debjani Pal
- Debraj De
- Dustin Gilmer
- Gautam Malviya Thakur
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Jordan Wright
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Michael Kirka
- Nate See
- Nedim Cinbiz
- Nithin Panicker
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sana Elyas
- Sandra Davern
- Subhabrata Saha
- Thien D. Nguyen
- Todd Thomas
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vipin Kumar
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.