Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Alex Plotkowski
- Amit Shyam
- Yong Chae Lim
- James A Haynes
- Mike Zach
- Peeyush Nandwana
- Rangasayee Kannan
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Post
- Bruce Moyer
- Bryan Lim
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gerry Knapp
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- John Lindahl
- Jovid Rakhmonov
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Nedim Cinbiz
- Nicholas Richter
- Padhraic L Mulligan
- Priyanshi Agrawal
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tomas Grejtak
- Tony Beard
- William Peter
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.