Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Mike Zach
- Sergei V Kalinin
- Vlastimil Kunc
- Ahmed Hassen
- Andrew F May
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- Debjani Pal
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jim Tobin
- John Lindahl
- Josh Crabtree
- Justin Griswold
- Kevin M Roccapriore
- Kim Sitzlar
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Merlin Theodore
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Sandra Davern
- Stephen Jesse
- Steven Guzorek
- Steven Randolph
- Subhabrata Saha
- Tony Beard
- Vipin Kumar
- Yongtao Liu

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.