Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Brian Post
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Alex Roschli
- Beth L Armstrong
- Dan Coughlin
- Greg Larsen
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Trevor Aguirre
- Tyler Smith
- William Carter
- Adam Stevens
- Andrzej Nycz
- Brittany Rodriguez
- Chris Masuo
- Craig Blue
- Georges Chahine
- Jim Tobin
- John Lindahl
- Luke Meyer
- Matt Korey
- Mike Zach
- Pum Kim
- Sanjita Wasti
- Segun Isaac Talabi
- Subhabrata Saha
- Sudarsanam Babu
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Alex Walters
- Amber Hubbard
- Amy Elliott
- Andrew F May
- Annetta Burger
- Ben Garrison
- Ben Lamm
- Brad Johnson
- Bruce Moyer
- Cait Clarkson
- Cameron Adkins
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Daniel Rasmussen
- David J Mitchell
- Debjani Pal
- Debraj De
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gautam Malviya Thakur
- Hsin Wang
- Isha Bhandari
- James Gaboardi
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse Heineman
- Jesse McGaha
- Jordan Wright
- Josh Crabtree
- Joshua Vaughan
- Julian Charron
- Justin Griswold
- Kevin Sparks
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Kuntal De
- Laetitia H Delmau
- Liam White
- Liz McBride
- Luke Sadergaski
- Marm Dixit
- Merlin Theodore
- Michael Borish
- Michael Kirka
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Padhraic L Mulligan
- Paritosh Mhatre
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Sandra Davern
- Sarah Graham
- Shajjad Chowdhury
- Thomas Feldhausen
- Todd Thomas
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- William Peter
- Xiuling Nie
- Yukinori Yamamoto

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.