Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Mike Zach
- Mingyan Li
- Sam Hollifield
- Alex Roschli
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Weber
- Bruce Moyer
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Erin Webb
- Evin Carter
- Hsin Wang
- Isaac Sikkema
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- John Lindahl
- Joseph Olatt
- Justin Griswold
- Kevin Spakes
- Kitty K Mccracken
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Lilian V Swann
- Luke Koch
- Luke Sadergaski
- Mahim Mathur
- Mary A Adkisson
- Mengdawn Cheng
- Nedim Cinbiz
- Oluwafemi Oyedeji
- Oscar Martinez
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Sandra Davern
- Soydan Ozcan
- T Oesch
- Tony Beard
- Tyler Smith
- Xianhui Zhao

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.