Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Steve Bullock
- Corson Cramer
- Ahmed Hassen
- Greg Larsen
- James Klett
- Nadim Hmeidat
- Trevor Aguirre
- Vlastimil Kunc
- Mike Zach
- Steven Guzorek
- Andrew F May
- Annetta Burger
- Ben Garrison
- Beth L Armstrong
- Brad Johnson
- Brian Sanders
- Brittany Rodriguez
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Dan Coughlin
- Daniel Rasmussen
- David J Mitchell
- David Nuttall
- Debjani Pal
- Debraj De
- Dustin Gilmer
- Gautam Malviya Thakur
- Gerald Tuskan
- Hsin Wang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- Jesse McGaha
- John F Cahill
- John Lindahl
- Jordan Wright
- Josh Michener
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Liz McBride
- Luke Sadergaski
- Michael Kirka
- Nedim Cinbiz
- Padhraic L Mulligan
- Paul Abraham
- Sana Elyas
- Sandra Davern
- Subhabrata Saha
- Todd Thomas
- Tomonori Saito
- Tony Beard
- Tyler Smith
- Vilmos Kertesz
- Vipin Kumar
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The technologies provide additively manufactured thermal protection system.

Reflective and emissive surfaces are designed with heat retention as opposed to the current state of the art oven and furnaces which use non-reflective surfaces. Heat is absorbed and transferred to the exterior of the heated appliances.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.

The technologies provide a system and method of needling of veiled AS4 fabric tape.