Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Mike Zach
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Andrew F May
- Ben Garrison
- Brad Johnson
- Brian Sanders
- Bruce Moyer
- Bryan Maldonado Puente
- Charlie Cook
- Christopher Hershey
- Corey Cooke
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Gerald Tuskan
- Gina Accawi
- Gurneesh Jatana
- Hsin Wang
- Ilenne Del Valle Kessra
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Michael Kirka
- Nedim Cinbiz
- Nolan Hayes
- Obaid Rahman
- Padhraic L Mulligan
- Paul Abraham
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Sandra Davern
- Tony Beard
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

Biocompatible nanoparticles have been developed that can trap and retain therapeutic radionuclides and their byproducts at the cancer site. This is important to maximize the therapeutic effect of this treatment and minimize associated side effects.