Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Michael Kirka
- Kyle Kelley
- Rama K Vasudevan
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Peeyush Nandwana
- Sergei V Kalinin
- Aaron Werth
- Alice Perrin
- Ali Passian
- Amir K Ziabari
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Corson Cramer
- Emilio Piesciorovsky
- Fred List III
- Gary Hahn
- Harper Jordan
- James Klett
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Keith Carver
- Kevin M Roccapriore
- Liam Collins
- Mark Provo II
- Marti Checa Nualart
- Maxim A Ziatdinov
- Nance Ericson
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Philip Bingham
- Raymond Borges Hink
- Richard Howard
- Rob Root
- Roger G Miller
- Sarah Graham
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Stephen Jesse
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Varisara Tansakul
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Yarom Polsky
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.