Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Aaron Werth
- Ali Passian
- Bryan Maldonado Puente
- Christopher Hobbs
- Corey Cooke
- Eddie Lopez Honorato
- Emilio Piesciorovsky
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Mark M Root
- Mark Provo II
- Matt Kurley III
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Raymond Borges Hink
- Rob Root
- Rodney D Hunt
- Ryan Heldt
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- Tyler Gerczak
- Varisara Tansakul
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).