Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Diana E Hun
- Mingyan Li
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sam Hollifield
- Stephen M Killough
- Vincent Paquit
- Aaron Werth
- Ali Passian
- Brian Weber
- Bryan Maldonado Puente
- Corey Cooke
- Emilio Piesciorovsky
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mark M Root
- Mark Provo II
- Mary A Adkisson
- Michael Kirka
- Nance Ericson
- Nolan Hayes
- Obaid Rahman
- Oscar Martinez
- Peter Wang
- Raymond Borges Hink
- Rob Root
- Ryan Kerekes
- Sally Ghanem
- Srikanth Yoginath
- T Oesch
- Varisara Tansakul
- Yarom Polsky

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).