Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Ali Abouimrane
- Kyle Kelley
- Ruhul Amin
- Vincent Paquit
- Akash Jag Prasad
- Anton Ievlev
- Arpan Biswas
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- David L Wood III
- Georgios Polyzos
- Gerd Duscher
- Hongbin Sun
- James Haley
- James Parks II
- Jaswinder Sharma
- Jaydeep Karandikar
- Junbin Choi
- Liam Collins
- Lu Yu
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Pradeep Ramuhalli
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Sumner Harris
- Utkarsh Pratiush
- Vladimir Orlyanchik
- Yaocai Bai
- Zackary Snow
- Zhijia Du

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.