Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Yong Chae Lim
- Brian Post
- Kyle Kelley
- Rangasayee Kannan
- Adam Stevens
- Alex Roschli
- Anton Ievlev
- Arpan Biswas
- Bryan Lim
- Cameron Adkins
- Diana E Hun
- Gerd Duscher
- Gina Accawi
- Gurneesh Jatana
- Isha Bhandari
- Jiheon Jun
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Peeyush Nandwana
- Philip Boudreaux
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Singanallur Venkatakrishnan
- Stephen Jesse
- Sudarsanam Babu
- Sumner Harris
- Tomas Grejtak
- Utkarsh Pratiush
- William Peter
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.