Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Amit K Naskar
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Brian Gibson
- Jaswinder Sharma
- Joshua Vaughan
- Kyle Kelley
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Amit Shyam
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin L Doughty
- Calen Kimmell
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Chris Tyler
- Clay Leach
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gerd Duscher
- Gordon Robertson
- Holly Humphrey
- J.R. R Matheson
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jesse Heineman
- John Potter
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Stephen Jesse
- Sumit Gupta
- Sumner Harris
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Vladimir Orlyanchik
- Xiaohan Yang

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

We present the design, assembly and demonstration of functionality for a new custom integrated robotics-based automated soil sampling technology as part of a larger vision for future edge computing- and AI- enabled bioenergy field monitoring and management technologies called

Creating a framework (method) for bots (agents) to autonomously, in real time, dynamically divide and execute a complex manufacturing (or any suitable) task in a collaborative, parallel-sequential way without required human interaction.