Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Andrzej Nycz
- Chris Masuo
- Rama K Vasudevan
- Ryan Dehoff
- Vincent Paquit
- Peter Wang
- Sergei V Kalinin
- Yongtao Liu
- Alex Walters
- Amit K Naskar
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Michael Kirka
- Rangasayee Kannan
- Singanallur Venkatakrishnan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Brian Post
- Clay Leach
- Jaswinder Sharma
- Joshua Vaughan
- Kyle Kelley
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Philip Bingham
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Anton Ievlev
- Arit Das
- Arpan Biswas
- Benjamin L Doughty
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Bowland
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Diana E Hun
- Edgar Lara-Curzio
- Erin Webb
- Evin Carter
- Felix L Paulauskas
- Frederic Vautard
- Gerd Duscher
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Holly Humphrey
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Kitty K Mccracken
- Liam Collins
- Liam White
- Mahshid Ahmadi-Kalinina
- Mark M Root
- Marti Checa Nualart
- Michael Borish
- Neus Domingo Marimon
- Obaid Rahman
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Ritin Mathews
- Robert E Norris Jr
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Santanu Roy
- Sarah Graham
- Soydan Ozcan
- Stephen Jesse
- Sudarsanam Babu
- Sumit Gupta
- Sumner Harris
- Tyler Smith
- Utkarsh Pratiush
- Uvinduni Premadasa
- Vera Bocharova
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.