Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- An-Ping Li
- Bruce Moyer
- Debjani Pal
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Hoyeon Jeon
- Jeffrey Einkauf
- Jennifer M Pyles
- Jewook Park
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mark M Root
- Michael Kirka
- Obaid Rahman
- Philip Boudreaux
- Saban Hus

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

An ORNL team has developed a method for screening for an immunoregulatory protein, which includes assessing the sequence of a candidate protein to determine if it is an immunoregulatory protein when at least one plasminogen-apple-nematode (PAN) domain with a consensus sequence