Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Mingyan Li
- Sam Hollifield
- Brian Weber
- Bruce Moyer
- Debangshu Mukherjee
- Isaac Sikkema
- Jeffrey Einkauf
- Jennifer M Pyles
- Joseph Olatt
- Kevin Spakes
- Kunal Mondal
- Laetitia H Delmau
- Lilian V Swann
- Luke Koch
- Luke Sadergaski
- Mahim Mathur
- Mary A Adkisson
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Oscar Martinez
- T Oesch
1 - 6 of 6 Results

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.