Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- William Carter
- Alex Roschli
- Ali Abouimrane
- Andrzej Nycz
- Brian Post
- Chris Masuo
- Georgios Polyzos
- Jaswinder Sharma
- Luke Meyer
- Ruhul Amin
- Sergiy Kalnaus
- Adam Stevens
- Alex Walters
- Amy Elliott
- Beth L Armstrong
- Cameron Adkins
- David L Wood III
- Erin Webb
- Evin Carter
- Hongbin Sun
- Isha Bhandari
- Jeremy Malmstead
- Joshua Vaughan
- Junbin Choi
- Kitty K Mccracken
- Liam White
- Lu Yu
- Marm Dixit
- Michael Borish
- Nancy Dudney
- Oluwafemi Oyedeji
- Peter Wang
- Pradeep Ramuhalli
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tyler Smith
- William Peter
- Xianhui Zhao
- Yaocai Bai
- Yukinori Yamamoto
- Zhijia Du

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.