Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Adam M Guss
- Alex Plotkowski
- Amit Shyam
- James A Haynes
- Josh Michener
- Sergiy Kalnaus
- Sumit Bahl
- Xiaohan Yang
- Alex Walters
- Alice Perrin
- Andres Marquez Rossy
- Andrzej Nycz
- Austin Carroll
- Beth L Armstrong
- Carrie Eckert
- Clay Leach
- Georgios Polyzos
- Gerald Tuskan
- Gerry Knapp
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jaswinder Sharma
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Jovid Rakhmonov
- Kyle Davis
- Liangyu Qian
- Nancy Dudney
- Nicholas Richter
- Paul Abraham
- Peeyush Nandwana
- Ryan Dehoff
- Serena Chen
- Sunyong Kwon
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu
- Ying Yang

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.