Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Sergiy Kalnaus
- Yaosuo Xue
- Alexander I Wiechert
- Benjamin Manard
- Beth L Armstrong
- Charles F Weber
- Costas Tsouris
- Fei Wang
- Georgios Polyzos
- Govindarajan Muralidharan
- Isaac Sikkema
- Jaswinder Sharma
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Mingyan Li
- Nancy Dudney
- Oscar Martinez
- Phani Ratna Vanamali Marthi
- Rafal Wojda
- Rose Montgomery
- Sam Hollifield
- Sreenivasa Jaldanki
- Suman Debnath
- Sunil Subedi
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Yonghao Gui

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Measurements of grid voltage and current are essential for the optimal operation of the grid protection and control (P&C) systems.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

Multi-terminal DC (MTdc) systems based on high-voltage DC (HVDC) transmission technology is an upcoming concept. In such systems, either asymmetric monopole or bi-pole systems are generally employed. Such systems are not suitable for easy expansion.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Stability performance of interconnected power grids plays crucial roles on their secure operation to prevent cascading failure and blackout.

Technologies directed to a multi-port autonomous reconfigurable solar power plant are described.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.