Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- James J Nutaro
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Ali Passian
- Dan Coughlin
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jim Tobin
- Joel Asiamah
- Joel Dawson
- Josh Crabtree
- Kim Sitzlar
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Nance Ericson
- Obaid Rahman
- Philip Boudreaux
- Steven Guzorek
- Subhabrata Saha
- Varisara Tansakul
- Vipin Kumar

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.