Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- James J Nutaro
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Vincent Paquit
- Alexander I Wiechert
- Ali Passian
- Benjamin Manard
- Charles F Weber
- Costas Tsouris
- Diana E Hun
- Gina Accawi
- Govindarajan Muralidharan
- Gurneesh Jatana
- Harper Jordan
- Isaac Sikkema
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Mark M Root
- Matt Vick
- Michael Kirka
- Mingyan Li
- Nance Ericson
- Obaid Rahman
- Oscar Martinez
- Philip Boudreaux
- Rose Montgomery
- Sam Hollifield
- Thomas R Muth
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.