Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Hongbin Sun
- Srikanth Yoginath
- Yong Chae Lim
- Zhili Feng
- James J Nutaro
- Jian Chen
- Pratishtha Shukla
- Rangasayee Kannan
- Sudip Seal
- Wei Zhang
- Adam Stevens
- Ali Passian
- Brian Post
- Bryan Lim
- Dali Wang
- Harper Jordan
- Ilias Belharouak
- Jiheon Jun
- Joel Asiamah
- Joel Dawson
- Nance Ericson
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Roger G Miller
- Ruhul Amin
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Thien D. Nguyen
- Tomas Grejtak
- Varisara Tansakul
- Vishaldeep Sharma
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.