Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Singanallur Venkatakrishnan
- Srikanth Yoginath
- Amir K Ziabari
- Diana E Hun
- James J Nutaro
- Philip Bingham
- Philip Boudreaux
- Pratishtha Shukla
- Ryan Dehoff
- Sergei V Kalinin
- Stephen M Killough
- Sudip Seal
- Vincent Paquit
- Ali Passian
- Anton Ievlev
- Bogdan Dryzhakov
- Bryan Maldonado Puente
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Joel Asiamah
- Joel Dawson
- Kevin M Roccapriore
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Nance Ericson
- Neus Domingo Marimon
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Peter Wang
- Ryan Kerekes
- Sally Ghanem
- Stephen Jesse
- Steven Randolph
- Varisara Tansakul
- Yongtao Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).