Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Blane Fillingim
- Brian Post
- Hongbin Sun
- Lauren Heinrich
- Peeyush Nandwana
- Prashant Jain
- Stephen M Killough
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Bryan Maldonado Puente
- Corey Cooke
- Diana E Hun
- Ian Greenquist
- Ilias Belharouak
- Nate See
- Nithin Panicker
- Nolan Hayes
- Peter Wang
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ramanan Sankaran
- Ruhul Amin
- Ryan Kerekes
- Sally Ghanem
- Vimal Ramanuj
- Vishaldeep Sharma
- Vittorio Badalassi
- Wenjun Ge

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).