Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexey Serov
- Blane Fillingim
- Brian Post
- Hongbin Sun
- Jaswinder Sharma
- Lauren Heinrich
- Peeyush Nandwana
- Prashant Jain
- Sudarsanam Babu
- Thomas Feldhausen
- Xiang Lyu
- Yousub Lee
- Amit K Naskar
- Beth L Armstrong
- Gabriel Veith
- Georgios Polyzos
- Holly Humphrey
- Ian Greenquist
- Ilias Belharouak
- James Szybist
- Jonathan Willocks
- Junbin Choi
- Khryslyn G Araño
- Logan Kearney
- Marm Dixit
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nate See
- Nihal Kanbargi
- Nithin Panicker
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ramanan Sankaran
- Ritu Sahore
- Ruhul Amin
- Todd Toops
- Vimal Ramanuj
- Vishaldeep Sharma
- Vittorio Badalassi
- Wenjun Ge

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.