Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Yong Chae Lim
- Blane Fillingim
- Lauren Heinrich
- Rangasayee Kannan
- Thomas Feldhausen
- Yousub Lee
- Zhili Feng
- Adam Stevens
- Alexandre Sorokine
- Bryan Lim
- Clinton Stipek
- Daniel Adams
- Jessica Moehl
- Jian Chen
- Jiheon Jun
- Philipe Ambrozio Dias
- Priyanshi Agrawal
- Ramanan Sankaran
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Taylor Hauser
- Tomas Grejtak
- Vimal Ramanuj
- Viswadeep Lebakula
- Wei Zhang
- Wenjun Ge
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.