Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Blane Fillingim
- James A Haynes
- Lauren Heinrich
- Ryan Dehoff
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Christopher Fancher
- Christopher Hobbs
- Dean T Pierce
- Eddie Lopez Honorato
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Matt Kurley III
- Nicholas Richter
- Peter Wang
- Ramanan Sankaran
- Rangasayee Kannan
- Rodney D Hunt
- Roger G Miller
- Ryan Heldt
- Sarah Graham
- Sunyong Kwon
- Tyler Gerczak
- Vimal Ramanuj
- Wenjun Ge
- William Peter
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

The use of Fluidized Bed Chemical Vapor Deposition to coat particles or fibers is inherently slow and capital intensive, as it requires constant modifications to the equipment to account for changes in the characteristics of the substrates to be coated.