Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Amit Shyam
- Alex Plotkowski
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Ali Abouimrane
- Blane Fillingim
- James A Haynes
- Lauren Heinrich
- Ruhul Amin
- Ryan Dehoff
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Adam Stevens
- Alice Perrin
- Andres Marquez Rossy
- Christopher Fancher
- David L Wood III
- Dean T Pierce
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Hongbin Sun
- Jaswinder Sharma
- Jay Reynolds
- Jeff Brookins
- Jovid Rakhmonov
- Junbin Choi
- Lu Yu
- Marm Dixit
- Nicholas Richter
- Peter Wang
- Pradeep Ramuhalli
- Ramanan Sankaran
- Rangasayee Kannan
- Roger G Miller
- Sarah Graham
- Sunyong Kwon
- Vimal Ramanuj
- Wenjun Ge
- William Peter
- Yaocai Bai
- Ying Yang
- Yukinori Yamamoto
- Zhijia Du

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.