Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Ali Riza Ekti
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Raymond Borges Hink
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Aaron Werth
- Aaron Wilson
- Arit Das
- Benjamin L Doughty
- Burak Ozpineci
- Christopher Bowland
- Edgar Lara-Curzio
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Holly Humphrey
- Isaac Sikkema
- Isabelle Snyder
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Ramanan Sankaran
- Robert E Norris Jr
- Sam Hollifield
- Santanu Roy
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Vimal Ramanuj
- Wenjun Ge
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.