Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Benjamin Manard
- Charles F Weber
- Christopher Rouleau
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Isaac Sikkema
- Ivan Vlassiouk
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Mina Yoon
- Mingyan Li
- Oscar Martinez
- Radu Custelcean
- Ramanan Sankaran
- Rose Montgomery
- Sam Hollifield
- Thomas R Muth
- Vandana Rallabandi
- Venugopal K Varma
- Vimal Ramanuj
- Wenjun Ge

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

The need for accurate temperature measurement in critical environments such as nuclear reactors is paramount for safety and efficiency.
Aromas play a significant role in the quality and safety of food, beverages, and even manufactured products. The ability to detect and interpret these aromas accurately can enhance product safety and consumer satisfaction.