Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Brian Post
- Peeyush Nandwana
- Sudarsanam Babu
- Blane Fillingim
- James A Haynes
- Lauren Heinrich
- Ryan Dehoff
- Sumit Bahl
- Thomas Feldhausen
- Yousub Lee
- Aaron Werth
- Adam Stevens
- Alice Perrin
- Ali Passian
- Andres Marquez Rossy
- Christopher Fancher
- Dean T Pierce
- Emilio Piesciorovsky
- Gary Hahn
- Gerry Knapp
- Gordon Robertson
- Harper Jordan
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jovid Rakhmonov
- Mark Provo II
- Nance Ericson
- Nicholas Richter
- Peter Wang
- Ramanan Sankaran
- Rangasayee Kannan
- Raymond Borges Hink
- Rob Root
- Roger G Miller
- Sarah Graham
- Srikanth Yoginath
- Sunyong Kwon
- Varisara Tansakul
- Vimal Ramanuj
- Wenjun Ge
- William Peter
- Yarom Polsky
- Ying Yang
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.