Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Philip Bingham
- Ryan Dehoff
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Bryan Lim
- Dan Coughlin
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Jim Tobin
- Josh Crabtree
- Kim Sitzlar
- Mark M Root
- Merlin Theodore
- Michael Kirka
- Obaid Rahman
- Peeyush Nandwana
- Philip Boudreaux
- Rangasayee Kannan
- Steven Guzorek
- Subhabrata Saha
- Tomas Grejtak
- Vipin Kumar
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.