Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Ying Yang
- Yong Chae Lim
- Alice Perrin
- Hongbin Sun
- Prashant Jain
- Rangasayee Kannan
- Ryan Dehoff
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alex Plotkowski
- Amit Shyam
- Brian Post
- Bruce A Pint
- Bryan Lim
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Ian Greenquist
- Ilias Belharouak
- James A Haynes
- Jiheon Jun
- Jong K Keum
- Michael Kirka
- Mina Yoon
- Nate See
- Nicholas Richter
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Ruhul Amin
- Sarah Graham
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Recent advances in magnetic fusion (tokamak) technology have attracted billions of dollars of investments in startups from venture capitals and corporations to develop devices demonstrating net energy gain in a self-heated burning plasma, such as SPARC (under construction) and

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.