Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Michael Kirka
- Ying Yang
- Amit K Naskar
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Alice Perrin
- Christopher Ledford
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alex Plotkowski
- Amir K Ziabari
- Amit Shyam
- Arit Das
- Benjamin L Doughty
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- Christopher Bowland
- Corson Cramer
- Costas Tsouris
- David S Parker
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Fred List III
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Holly Humphrey
- James A Haynes
- James Klett
- Jong K Keum
- Keith Carver
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Richard Howard
- Robert E Norris Jr
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Singanallur Venkatakrishnan
- Steve Bullock
- Sudarsanam Babu
- Sumit Bahl
- Sumit Gupta
- Sunyong Kwon
- Thomas Butcher
- Tim Graening Seibert
- Trevor Aguirre
- Uvinduni Premadasa
- Vera Bocharova
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yukinori Yamamoto

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.