Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ying Yang
- Alice Perrin
- Ali Riza Ekti
- Mike Zach
- Raymond Borges Hink
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Aaron Werth
- Aaron Wilson
- Alex Plotkowski
- Amit Shyam
- Andrew F May
- Ben Garrison
- Brad Johnson
- Bruce A Pint
- Bruce Moyer
- Burak Ozpineci
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- David S Parker
- Debjani Pal
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hsin Wang
- Isaac Sikkema
- Isabelle Snyder
- James A Haynes
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- John Lindahl
- Jong K Keum
- Joseph Olatt
- Justin Griswold
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Mahim Mathur
- Michael Kirka
- Mina Yoon
- Mingyan Li
- Mostak Mohammad
- Nedim Cinbiz
- Nicholas Richter
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Peter L Fuhr
- Radu Custelcean
- Ryan Dehoff
- Sam Hollifield
- Sandra Davern
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tony Beard
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yarom Polsky

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.