Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit Shyam
- Ying Yang
- Alex Plotkowski
- Ryan Dehoff
- Alice Perrin
- James A Haynes
- Steven J Zinkle
- Sumit Bahl
- Yanli Wang
- Yutai Kato
- Aaron Werth
- Adam Stevens
- Ali Passian
- Andres Marquez Rossy
- Brian Post
- Bruce A Pint
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Dean T Pierce
- Emilio Piesciorovsky
- Gary Hahn
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Jason Jarnagin
- Jay Reynolds
- Jeff Brookins
- Joel Asiamah
- Joel Dawson
- Jong K Keum
- Jovid Rakhmonov
- Mark Provo II
- Michael Kirka
- Mina Yoon
- Nance Ericson
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Raymond Borges Hink
- Rob Root
- Roger G Miller
- Sarah Graham
- Srikanth Yoginath
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Varisara Tansakul
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yarom Polsky
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.