Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Amit Shyam
- Halil Tekinalp
- Meghan Lamm
- Vlastimil Kunc
- Ahmed Hassen
- Umesh N MARATHE
- Ying Yang
- Alex Plotkowski
- Dan Coughlin
- Edgar Lara-Curzio
- Katie Copenhaver
- Ryan Dehoff
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Adam Willoughby
- Alex Roschli
- Alice Perrin
- Beth L Armstrong
- Brian Post
- Bruce A Pint
- David Nuttall
- Eric Wolfe
- Georges Chahine
- James A Haynes
- Matt Korey
- Nadim Hmeidat
- Pum Kim
- Rishi Pillai
- Sanjita Wasti
- Steve Bullock
- Steven J Zinkle
- Sumit Bahl
- Tyler Smith
- Xianhui Zhao
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Andres Marquez Rossy
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Cait Clarkson
- Charles Hawkins
- Christopher Fancher
- Christopher Ledford
- Dean T Pierce
- Erin Webb
- Evin Carter
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- Jim Tobin
- Josh Crabtree
- Jovid Rakhmonov
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Marie Romedenne
- Marm Dixit
- Michael Kirka
- Nicholas Richter
- Nidia Gallego
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Peter Wang
- Priyanshi Agrawal
- Rangasayee Kannan
- Roger G Miller
- Sana Elyas
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Sunyong Kwon
- Tim Graening Seibert
- Tolga Aytug
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zhili Feng

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.