Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Radu Custelcean
- Costas Tsouris
- Bruce Moyer
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Jeffrey Einkauf
- Ying Yang
- Yong Chae Lim
- Zhili Feng
- Adam Willoughby
- Benjamin L Doughty
- Bruce A Pint
- Eric Wolfe
- Gs Jung
- Jian Chen
- Nikki Thiele
- Rangasayee Kannan
- Rishi Pillai
- Ryan Dehoff
- Santa Jansone-Popova
- Steven J Zinkle
- Wei Zhang
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bryan Lim
- Charles Hawkins
- Christopher Ledford
- Dali Wang
- Frederic Vautard
- Ilja Popovs
- Jayanthi Kumar
- Jennifer M Pyles
- Jiheon Jun
- Jong K Keum
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Md Faizul Islam
- Meghan Lamm
- Michael Kirka
- Mina Yoon
- Nidia Gallego
- Parans Paranthaman
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Santanu Roy
- Sarah Graham
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Subhamay Pramanik
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yingzhong Ma
- Yiyu Wang
- Yukinori Yamamoto

The invention teaches a method for separating uranium and the transuranic actinides neptunium, plutonium, and americium from nitric acid solutions by co-crystallization upon lowering the temperature from 60 C to 20 C or lower.

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.