Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Soydan Ozcan
- Chris Masuo
- Halil Tekinalp
- Meghan Lamm
- Ryan Dehoff
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Brian Post
- Peter Wang
- Umesh N MARATHE
- Alex Roschli
- Alex Walters
- Dan Coughlin
- Edgar Lara-Curzio
- Katie Copenhaver
- Michael Kirka
- Rangasayee Kannan
- Steven Guzorek
- Uday Vaidya
- Venkatakrishnan Singanallur Vaidyanathan
- Vipin Kumar
- Ying Yang
- Adam Stevens
- Adam Willoughby
- Amir K Ziabari
- Beth L Armstrong
- Brian Gibson
- Bruce A Pint
- Clay Leach
- David Nuttall
- Eric Wolfe
- Georges Chahine
- Jesse Heineman
- Joshua Vaughan
- Luke Meyer
- Matt Korey
- Nadim Hmeidat
- Peeyush Nandwana
- Philip Bingham
- Pum Kim
- Rishi Pillai
- Sanjita Wasti
- Steve Bullock
- Steven J Zinkle
- Tyler Smith
- Udaya C Kalluri
- William Carter
- Xianhui Zhao
- Yanli Wang
- Yutai Kato
- Adwoa Owusu
- Akash Jag Prasad
- Akash Phadatare
- Alice Perrin
- Amber Hubbard
- Amit Shyam
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brittany Rodriguez
- Cait Clarkson
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Charles Hawkins
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Chris Tyler
- Costas Tsouris
- Diana E Hun
- Erin Webb
- Evin Carter
- Frederic Vautard
- Gabriel Veith
- Gina Accawi
- Gordon Robertson
- Gurneesh Jatana
- Isha Bhandari
- J.R. R Matheson
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jiheon Jun
- Jim Tobin
- John Potter
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam White
- Marie Romedenne
- Mark M Root
- Marm Dixit
- Michael Borish
- Nidia Gallego
- Obaid Rahman
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Priyanshi Agrawal
- Riley Wallace
- Ritin Mathews
- Roger G Miller
- Sana Elyas
- Sarah Graham
- Segun Isaac Talabi
- Shajjad Chowdhury
- Subhabrata Saha
- Sudarsanam Babu
- Tim Graening Seibert
- Tolga Aytug
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiaohan Yang
- Yan-Ru Lin
- Yong Chae Lim
- Yukinori Yamamoto
- Zackary Snow
- Zhili Feng

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.