Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Hongbin Sun
- Mike Zach
- Prashant Jain
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Andrew F May
- Ben Garrison
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Bruce Moyer
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eric Wolfe
- Frederic Vautard
- Hsin Wang
- Ian Greenquist
- Ilias Belharouak
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nate See
- Nedim Cinbiz
- Nidia Gallego
- Nithin Panicker
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Ruhul Amin
- Ryan Dehoff
- Sandra Davern
- Shajjad Chowdhury
- Tim Graening Seibert
- Tolga Aytug
- Tony Beard
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).