Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Amit K Naskar
- Edgar Lara-Curzio
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Frederic Vautard
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Mike Zach
- Nihal Kanbargi
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alice Perrin
- Andrew F May
- Arit Das
- Ben Garrison
- Benjamin L Doughty
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brad Johnson
- Brandon Johnston
- Bruce Moyer
- Charles Hawkins
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Hsin Wang
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jiheon Jun
- John Lindahl
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Luke Sadergaski
- Marie Romedenne
- Meghan Lamm
- Michael Kirka
- Nedim Cinbiz
- Nidia Gallego
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Robert E Norris Jr
- Ryan Dehoff
- Sandra Davern
- Santanu Roy
- Shajjad Chowdhury
- Sumit Gupta
- Tim Graening Seibert
- Tolga Aytug
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

The technologies provide a system and method of needling of veiled AS4 fabric tape.