Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Ying Yang
- Yong Chae Lim
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Kyle Kelley
- Rangasayee Kannan
- Rishi Pillai
- Ryan Dehoff
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Alice Perrin
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Brian Post
- Bryan Lim
- Charles Hawkins
- Christopher Ledford
- Eric Wolfe
- Frederic Vautard
- Gerd Duscher
- Jiheon Jun
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marie Romedenne
- Marti Checa Nualart
- Meghan Lamm
- Michael Kirka
- Neus Domingo Marimon
- Nidia Gallego
- Olga S Ovchinnikova
- Patxi Fernandez-Zelaia
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Sai Mani Prudhvi Valleti
- Sarah Graham
- Shajjad Chowdhury
- Stephen Jesse
- Sudarsanam Babu
- Sumner Harris
- Tim Graening Seibert
- Tolga Aytug
- Tomas Grejtak
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yiyu Wang
- Yukinori Yamamoto
- Zhili Feng

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.