Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Adam M Guss
- Kashif Nawaz
- Gabriel Veith
- Guang Yang
- Joe Rendall
- Josh Michener
- Michelle Lehmann
- Zhiming Gao
- Beth L Armstrong
- Kai Li
- Lawrence {Larry} M Anovitz
- Liangyu Qian
- Praveen Cheekatamarla
- Robert Sacci
- Tomonori Saito
- Vishaldeep Sharma
- Austin L Carroll
- Ethan Self
- Isaiah Dishner
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Jeff Foster
- John F Cahill
- Kyle Gluesenkamp
- Mingkan Zhang
- Serena Chen
- Sergiy Kalnaus
- Xiaohan Yang
- Alexandra Moy
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Andrzej Nycz
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Bo Shen
- Brian Fricke
- Carrie Eckert
- Chanho Kim
- Cheng-Min Yang
- Clay Leach
- Easwaran Krishnan
- Felipe Polo Garzon
- Georgios Polyzos
- Gerald Tuskan
- Hongbin Sun
- Huixin (anna) Jiang
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Jay D Huenemann
- Joanna Tannous
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kyle Davis
- Logan Kearney
- Matthew S Chambers
- Melanie Moses-DeBusk Debusk
- Michael Toomey
- Muneeshwaran Murugan
- Nancy Dudney
- Nickolay Lavrik
- Nihal Kanbargi
- Paul Abraham
- Pengtao Wang
- Peng Yang
- Sai Krishna Reddy Adapa
- Troy Seay
- Udaya C Kalluri
- Vera Bocharova
- Vilmos Kertesz
- Vincent Paquit
- William Alexander
- Xiang Lyu
- Yang Liu

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We tested 48 diverse homologs of SfaB and identified several enzyme variants that were more active than SfaB at synthesizing the nylon-6,6 monomer.

We have developed thermophilic bacterial strains that can break down PET and consume ethylene glycol and TPA. This will help enable modern, petroleum-derived plastics to be converted into value-added chemicals.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.