Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Ying Yang
- Amit Shyam
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Alex Plotkowski
- Alice Perrin
- Blane Fillingim
- Brian Post
- Ethan Self
- Jaswinder Sharma
- Lauren Heinrich
- Rangasayee Kannan
- Robert Sacci
- Ryan Dehoff
- Sergiy Kalnaus
- Steven J Zinkle
- Sudarsanam Babu
- Thomas Feldhausen
- Yanli Wang
- Yousub Lee
- Yutai Kato
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andres Marquez Rossy
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Bruce A Pint
- Bryan Lim
- Chanho Kim
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Felipe Polo Garzon
- Georgios Polyzos
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Ilias Belharouak
- James A Haynes
- Jay Reynolds
- Jeff Brookins
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Kirka
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nicholas Richter
- Nihal Kanbargi
- Patxi Fernandez-Zelaia
- Peng Yang
- Peter Wang
- Radu Custelcean
- Sai Krishna Reddy Adapa
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tomas Grejtak
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yiyu Wang

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.