Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Radu Custelcean
- Costas Tsouris
- Kyle Gluesenkamp
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Gyoung Gug Jang
- Jeffrey Einkauf
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Benjamin L Doughty
- Bo Shen
- Bruce Moyer
- Ethan Self
- Gs Jung
- Jaswinder Sharma
- Melanie Moses-DeBusk Debusk
- Nikki Thiele
- Robert Sacci
- Santa Jansone-Popova
- Sergiy Kalnaus
- Vera Bocharova
- Alexander I Wiechert
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Dhruba Deka
- Felipe Polo Garzon
- Georgios Polyzos
- Ilias Belharouak
- Ilja Popovs
- James Manley
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Laetitia H Delmau
- Logan Kearney
- Luke Sadergaski
- Matthew S Chambers
- Md Faizul Islam
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Navin Kumar
- Nihal Kanbargi
- Parans Paranthaman
- Peng Yang
- Sai Krishna Reddy Adapa
- Santanu Roy
- Saurabh Prakash Pethe
- Sreshtha Sinha Majumdar
- Subhamay Pramanik
- Tugba Turnaoglu
- Uvinduni Premadasa
- Xiang Lyu
- Xiaobing Liu
- Yeonshil Park
- Yifeng Hu
- Yingzhong Ma

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.

The invention describes a configuration of dishwasher using thermoelectric heat pumps that can accomplish energy savings and enhanced drying performance.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Develop an innovative refrigerator having a thermoelectric cooler cascaded with a regular refrigerator compression system. the TE cooler dedicatedly controls the temperature in a freezer compartment.