Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Omer Onar
- Subho Mukherjee
- Vivek Sujan
- Mostak Mohammad
- Vandana Rallabandi
- Radu Custelcean
- Costas Tsouris
- Erdem Asa
- Shajjad Chowdhury
- Beth L Armstrong
- Burak Ozpineci
- Emrullah Aydin
- Gabriel Veith
- Guang Yang
- Gyoung Gug Jang
- Jeffrey Einkauf
- Jon Wilkins
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Tomonori Saito
- Adam Siekmann
- Benjamin L Doughty
- Bruce Moyer
- Ethan Self
- Gs Jung
- Gui-Jia Su
- Jaswinder Sharma
- Nikki Thiele
- Robert Sacci
- Santa Jansone-Popova
- Sergiy Kalnaus
- Veda Prakash Galigekere
- Vera Bocharova
- Alexander I Wiechert
- Alexey Serov
- Ali Riza Ekti
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Chanho Kim
- Felipe Polo Garzon
- Georgios Polyzos
- Hong Wang
- Hyeonsup Lim
- Ilias Belharouak
- Ilja Popovs
- Isabelle Snyder
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Laetitia H Delmau
- Lingxiao Xue
- Logan Kearney
- Luke Sadergaski
- Matthew S Chambers
- Md Faizul Islam
- Michael Toomey
- Mina Yoon
- Nancy Dudney
- Nihal Kanbargi
- Parans Paranthaman
- Peng Yang
- Rafal Wojda
- Sai Krishna Reddy Adapa
- Santanu Roy
- Saurabh Prakash Pethe
- Subhamay Pramanik
- Uvinduni Premadasa
- Xiang Lyu
- Yingzhong Ma

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

The technologies provides for regeneration of anion-exchange resin.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

Induction cooktops are becoming popular; however, a limitation is that compatible cookware is required. This is a significant barrier to its adoption.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

This invention describes a new class of amphiphilic chelators (extractants) that can selectively separate large, light rare earth elements from heavy, small rare earth elements in solvent extraction schemes.