Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ali Passian
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Beth L Armstrong
- Lawrence {Larry} M Anovitz
- Robert Sacci
- Tomonori Saito
- Ethan Self
- Jaswinder Sharma
- Sergiy Kalnaus
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Sanders
- Chanho Kim
- Claire Marvinney
- Felipe Polo Garzon
- Georgios Polyzos
- Gerald Tuskan
- Harper Jordan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- Joel Asiamah
- Joel Dawson
- John F Cahill
- Josh Michener
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Liangyu Qian
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nance Ericson
- Nancy Dudney
- Nihal Kanbargi
- Paul Abraham
- Peng Yang
- Sai Krishna Reddy Adapa
- Srikanth Yoginath
- Varisara Tansakul
- Vera Bocharova
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Yang Liu

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.