Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Beth L Armstrong
- Kashif Nawaz
- Amit Shyam
- Peeyush Nandwana
- Gabriel Veith
- Joe Rendall
- Zhiming Gao
- Alex Plotkowski
- Brian Post
- Guang Yang
- Jun Qu
- Kai Li
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Praveen Cheekatamarla
- Rangasayee Kannan
- Sudarsanam Babu
- Tomonori Saito
- Vishaldeep Sharma
- Yong Chae Lim
- Blane Fillingim
- Corson Cramer
- Ethan Self
- James A Haynes
- James Manley
- Jamieson Brechtl
- Jaswinder Sharma
- Khryslyn G Araño
- Kyle Gluesenkamp
- Lauren Heinrich
- Meghan Lamm
- Mingkan Zhang
- Robert Sacci
- Ryan Dehoff
- Sergiy Kalnaus
- Steve Bullock
- Sumit Bahl
- Thomas Feldhausen
- Tomas Grejtak
- Ying Yang
- Yousub Lee
- Adam Stevens
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Andres Marquez Rossy
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Ben Lamm
- Bo Shen
- Brian Fricke
- Bruce A Pint
- Bryan Lim
- Chanho Kim
- Cheng-Min Yang
- Christopher Fancher
- Christopher Ledford
- David J Mitchell
- Dean T Pierce
- Easwaran Krishnan
- Felipe Polo Garzon
- Georgios Polyzos
- Gerry Knapp
- Glenn R Romanoski
- Gordon Robertson
- Govindarajan Muralidharan
- Hongbin Sun
- Huixin (anna) Jiang
- Ilias Belharouak
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jiheon Jun
- Jordan Wright
- Jovid Rakhmonov
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Logan Kearney
- Marm Dixit
- Matthew S Chambers
- Melanie Moses-DeBusk Debusk
- Michael Kirka
- Michael Toomey
- Muneeshwaran Murugan
- Nancy Dudney
- Nicholas Richter
- Nickolay Lavrik
- Nihal Kanbargi
- Pengtao Wang
- Peng Yang
- Peter Wang
- Priyanshi Agrawal
- Roger G Miller
- Rose Montgomery
- Sai Krishna Reddy Adapa
- Sarah Graham
- Shajjad Chowdhury
- Steven J Zinkle
- Sunyong Kwon
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Trevor Aguirre
- Troy Seay
- Venugopal K Varma
- Vera Bocharova
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Xiang Lyu
- Yanli Wang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato
- Zhili Feng

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

US coastal and island communities have vulnerable energy infrastructure and high energy costs, which are exacerbated by climate change.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This invention aims to develop a new feature for a heat pump water heater having a forced flow condenser, coupled with a mixing valve, and a new feature to maximize the first hour rating and provide quick response to hot water demand, comparable to a typical gas water heater.&

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.