Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Tomonori Saito
- Sheng Dai
- Radu Custelcean
- Parans Paranthaman
- Zhenzhen Yang
- Anisur Rahman
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Costas Tsouris
- Jeff Foster
- Amit K Naskar
- Craig A Bridges
- Diana E Hun
- Edgar Lara-Curzio
- Gabriel Veith
- Guang Yang
- Gyoung Gug Jang
- Ilja Popovs
- Jaswinder Sharma
- Jeffrey Einkauf
- Lawrence {Larry} M Anovitz
- Mary Danielson
- Michelle Lehmann
- Shannon M Mahurin
- Syed Islam
- Alexei P Sokolov
- Benjamin L Doughty
- Bruce Moyer
- Catalin Gainaru
- Ethan Self
- Frederic Vautard
- Gs Jung
- Li-Qi Qiu
- Logan Kearney
- Michael Toomey
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Ramesh Bhave
- Robert Sacci
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Sergiy Kalnaus
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Zoriana Demchuk
- Achutha Tamraparni
- Ahmed Hassen
- Alexander I Wiechert
- Alexey Serov
- Amanda Musgrove
- Andrew G Stack
- Anees Alnajjar
- Anna M Mills
- Arit Das
- Ben Lamm
- Chanho Kim
- Christopher Bowland
- Corson Cramer
- Eric Wolfe
- Felipe Polo Garzon
- Felix L Paulauskas
- Georgios Polyzos
- Holly Humphrey
- Ilias Belharouak
- Isaiah Dishner
- Jayanthi Kumar
- Jennifer M Pyles
- Jong K Keum
- Josh Michener
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Karen Cortes Guzman
- Kaustubh Mungale
- Khryslyn G Araño
- Kuma Sumathipala
- Laetitia H Delmau
- Liangyu Qian
- Luke Sadergaski
- Matthew S Chambers
- Md Faizul Islam
- Meghan Lamm
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nancy Dudney
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Peng Yang
- Phillip Halstenberg
- Robert E Norris Jr
- Sai Krishna Reddy Adapa
- Santanu Roy
- Shailesh Dangwal
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Uvinduni Premadasa
- Vlastimil Kunc
- Xiang Lyu
- Yingzhong Ma

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

The increasing demand for high-purity lanthanides, essential for advanced technologies such as electronics, renewable energy, and medical applications, presents a significant challenge due to their similar chemical properties.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Mineral looping is a promising method for direct air capture of CO2. However, reduction of sorbent reactivity after each loop is likely to be significant problems for mineral looping by MgO.

With the ever-increasing problem of plastic waste, several avenues to decrease plastic use and manage waste introduced by disposable plastic products have arisen.

This invention utilizes a salt and an amine containing small molecule or polymer for the synthesis of a bulky anionic salt or containing single-ion conducting polymer electrolyte for the use in Li-ion and beyond Li-ion batteries.

Carbon capture from air typically requires large amounts of solvent and sorbent that are energetically costly to regenerate. It also suffers from degradation, is environmentally unsustainable, and very expensive.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.